د رېږدلې انجنيري
رېږدلې انجينري (په انگرېزي: Earthquake Engineering) د انجينرۍ هغه څانگه ده چې د رېږدلې او د هغه څخه د راولاړو طبیعي ناورینونو د څیړلو، مخنیوي، لاملونو، او نورو په برخه کې کار کوي.[۱] پخوا به د رېږدلې انجينري داسې تعریف کیده چې د ودانیو او ځمکنیو جوړښتونو کړه د رېږدلې پر وړاندې څیړي او را پیژني. لدې امله وروسته دغه څانگه د دواړو ودانیو انجينريstructural engineering او ځمکپیژندنې geotechnical engineering د ټولگې په توگه وپیژندل شوه.
د رېږدلې انجينرۍموخې دادي:
- د سختو زلزلو د پایلو او ورانیو وړاندوینه اغیز چې په ښاري سیمو او بنسټیزو ساختمانونو ېې اچوي.
- د ودانونې او جوړونې د کوډونو پر بنسټ ولاړ نوې ودانۍ ډیزان،جوړې او ترمیم کړي ترڅو د تمې سره سم د پیښیدونکو زلزلو پر وړاندې کلک او ښه مقاومت ولري.
یو انجیمري تعمیر اړینه نده چې باید بیخي زیات کلک او غیر اقتصادي وي. بلکه باید د امکان تر بریده اقتصادي او تر ټاکلي یا په پام کې نیول شوي بریده د سیمې د مکررو زلزلو پر وړاندې کلک او هم څه ناڅه نړیدنه پکې رامنځ ته شي.
د رېږدلې بار
د رېږدلې بار اچونه یعنې ودانۍ یا بل هر سترکچر ته د رېږدلې پوسیله د منځ ته راغلی خوځښت ورکول. دغه بار ودانۍ ته د ځمکې پر مخ،او یا هم د کوم بل سترکچر پرسر لکه پر پل د رېږدلې بار د هغې د ستنو د پاسه ور تپل کیږي.
د رېږدلې پر وړاندې د ودانۍ کړه
زلزله او یا د رېږدلې پر وړاندې د ودانۍ کړه(seismic performance) د ودانۍ هغه ځواک ښيي چې د پیښې شوې رېږدلې پرمهال خپل کړه څرگند کړي. د بیلگې په توگه د رېږدلې د پیښیدو او د هغې وروسته باید ودانۍ خوندي، او د کارونې وړ وي. یوه ودانۍ هغه مهال خوندي safe بلل کیږي چې پکې استوگن او شاوخوا خلکو ژوند په خطر کې وا نه چوي. چې دا خطر د بشپړ او یا هم ځنو برخو د نړیدو له کبله وي. یوه ودانۍ هغه وخت د کارونې وړ serviceable بلل کیږي چې ورته پام کې نیولې ځانگړتیاوې ېې په پوره توگه د کار وړ وي او یا نه وي زیانمنې شوې.
د رېږدلې پر وړاندې د کړو ارزونه
انجینران باید پوه شي چې د یوې ټاکلې رېږدلې د خوځښت پر وړاندې یوه ودانۍ په څومره کچه خپل کړه ترسره کولی شي. دغه ارزونه هم په تجربي او هم په شننیزه یا تحلیلي توگه ترسره کیږي.
تجربي ارزونه
په تجربي ډول ارزونه تل زیات لگښت لري. پدې ډول ارزونه کې د یوې ودانۍ بیلگه یا ماډل د یو ځانگړي سکیل سره جوړیږي، او بیا په لړزونکي میز باندې مصنوعي زلزله ورکول کیږي، پدې توگه د رېږدلې پر وړاندې د دغه ودانۍ کړه ارزوي.
داچې دغه ډول آزمایښتونه زیات لگښت ته اړتیا لري ترڅو د یوې ودانۍ ارزونه وکړي؛ غوره پیتیل شوېده چې ددې کار لپاره د باور وړ موډلونه او د شننې لارې چارې رامنځ ته او د هغوی پر دقت او کره والي کار وکړي. کله چې د باور وړ کره موډلونه او د شننې لارې رامنڅ ته شوې، دغه لارې بیا د تجربي آزمایښتونو پر ځای کاروي چې پدې توگه د رېږدلې پر وړاندې د یوې ودانۍ د ارزولو بیه ډیره ارزانه پریوزي.
شننیز یا تحلیلي ارزونه
شننیزه ارزونه یا د ودانۍ شننه چې انگریزي کې ورته (seismic structural analysis) وايي، د رېږدلې انجينرۍیوه پیاوړې وسیله ده چې د هغې پر مټ د ودانیو مشرح موډلونونو وړتیا د ودانیو د شننې په کارولو سره معلوموي؛ او د رېږدلې پر وړاندې د ودانۍ د کړو د ښه پوهاوي په برخه کې ډیر اغیزمن پریوزي.
په ټوله کې د ودانیو شننه پر ساختماني ډینامیکس چې انگریزي کې ورته structural dynamics.[۲] .[1]) وايي، ولاړه ده. د رېږدلې د شننې ترټولو مخکښه وسیله د ځواب سپکټرون یا response spectrum لاره ده.
که څه هم داډول لارې د ارتجاعي سیستمونو لپاره ښې دي، خو کله چې یوه ودانۍ ډیره سخته زیانمنه شي د هغې د کړه بیا د غیر ارتجاعي یا (non-linearity) په بڼه څرگندیږي. د گام-په-گام انټگرال شننیزه لار د یوې گټورې وسیلې او لارې په توگه د څو-درجې-آزادۍ لرونکو ودانیو د شننې لپاره پیژندل شویده.
په لنډ ډول، د ودانۍ شننه ددې لپاره ترسره کیږي ترڅو د هغې کړه د رېږدلې پر وړاندې و ارزوي. د ودانۍ د کړو ارزونه د غیر ارتجاعي سټاټیک پوش اور (nonlinear static pushover) شننې او یا هم (nonlinear time-history analysis) شننې په ترسره کولو سره په لاس راځي. ددې لارو د پلي کولو لپاره اړینه ده چې لمړی د ودانۍ د غړو لکه ستنه (column)، تیر (beams) غوټه (beam-column joint) او دیوال (shear wall) یو وړ او مناسب غیر ارتجاعي موډل برابر شي. د کره موډلونو د پیژندلو او برابرولو په برخه کې تجربي پایلې ښه مرسته کولی شي ترڅو د هر غړي کره موډل په تیره بیا د هغه غړو چې زیات غیر ارتجاعي بدلون (deformations) ېې موندلی وي پیدا او تیار کړی شو. د هر غړي غیر ارتجاعي موډلونه بیا یو د بل سره تړل کیږي ترڅو د ټولې ودانۍ غیر ارتجاعي موډل ترې لاسته راشي. او لاسته راغلی موډل بیا شنل کیږي ترڅو د ودانۍ د کړو ارزونه ېې وشي.
په اوسني وخت کې پورته یادو چارو لپاره کمپیوټري پروگرامونه ډیر زیات کار کولی شي. په بازار کې بې شمیره سوداگریز پوستکالي (software) شته چې ددې موخې لپاره کاریدی شي د بیلگې په توگه: CSI-SAP2000، CSI-PERFORM-3D او نور. همداراز پر څیړنه-ولاړ (research-based) کمپیوټري پوستکالي پدې برخه کې د لاس رسي وړ دي لکه :RUAUMOKO ،OpenSees او DRAIN-2D/3D، چې د پرانیستې سرچینې (open source) په ډول ورته لاس رسی کیدی شي.
د رېږدلې انجينرۍ اړونده څېړنې
پدې برخه کې څیړنې او گویږنې په شننیز او تجربي توگه ترسره کیږي ترڅو د رېږدلې انجينرۍاړوند بیلابیلو برخو کې ښه، کره، علمي موندنو لاس بري وشي. پدې توگه به د شته منل شوو معیارونو بیا کتنه او سمونه د نوو موندنو په رڼا کې ترسره او د پلي کیدو په ډگر کې پوره آسانتیاوې او کره توب رامنځ ته شي.
Earthquake Engineering Research Institute یا (EERI) د رېږدلې انجينرۍپه څیړنیزو چارو کې مخکښه اداره ده چې هم په متحده ایالتونو او هم په نړیواله کچه فعالیت کوي.
په نړیواله کچه د رېږدلې اړوند څیړنې په لاندې مرکزونو او یا د دوی تر سیوري لاندې ترسره کیږي:
- Earthquake Engineering Research Institute (EERI)
- Earthquake Engineering Research Center Archived 2012-10-14 at the Wayback Machine.
- Pacific Earthquake Engineering Research Center (PEER)
- John A. Blume Earthquake Engineering Center
- Consortium of Universities for Research in Earthquake Engineering (CUREE)
- Multidisciplinary Center for Earthquake Engineering Research (MCEER) Archived 2012-10-05 at the Wayback Machine.
- USGS Earthquake Hazards Program
- Office of Earthquake Engineering at Caltrans
- Earthquake Engineering Research Centre of Iceland
- Earthquake Engineering New Zealand Archived 2007-05-06 at the Wayback Machine.
- Canadian Research Centers and Research Groups on Earthquake Engineering Archived 2013-04-08 at the Wayback Machine.
- Hyogo Earthquake Engineering Research Center
- Laboratory for Earthquake Engineering of NTUA Archived 2007-07-17 at the Wayback Machine.
- Earthquakes and Earthquake Engineering in The Library of Congress
د رېږدلې موډل کول
د رېږدلې موډل کول یا (Earthquake simulation) د لمړي ځل لپاره د یوې افقي قوې پر واردولو سره چې په واقعیت کې د ودانۍ د عطالت قوه ده ترسره شو. پدې موډل کې د ځمکې د خوځښت تعجیل په سکیل شوې بڼه د ودانۍ پر ریاضیکي موډل وارد شوی و. را وروسته بیا د محاسبوي تکنالوژۍ د پرمختگ سره د ډینامیک شننې لپاره گام واخیستل شو.
د ودانیو ډینامیکي شننه کیدای شي تجربي وی لکه د لړزونکي میز پر سره د ودانیو د د موډلونو لړزول، او یا هم خیالي () لکه د ریاضیکي موډلونو شننه. په دواړو حالتونو کې موخه داده چې د ودانۍ کړه د رېږدلې پر وړاندې ښکاره او و ارزوي. ځنې څیړونکي د
کله کله د رېږدلې موډل کول یا (earthquake simulation) د ځواکمنې رېږدلې د لړزې څخه د را ولاړو اغیزو د بیا جوړونې یا (re-creation) په ډول تعریف کیږي.
د ودانۍ موډل کول
د یوې ودانۍ د کړو د ارزونې لپاره هغه که په نظري توگه وي او که په تجربي، د یادې ودانۍ موډل کولو ته اړتیا پیښیږي. دغه موډل کول د ودانیز ورته والي (structural likeness or similarity) پر بنسټ ولاړ وي. دغه ورته والی کیدای شي د دوه څیزونو د پوره برابرۍ او یا هم د اصلي څیز د یوې اټکلي څیرې په توگه ومنل شي.
د یوې ودانۍ موډل هغه وخت ورته بلل کیږي چې د اصلي ودانۍ سره په هندسي بڼه geometric similarity، حرکي بڼه kinematic similarity او ډینامیکي بڼه dynamic similarity کې ورته والی ولري. ترټولو اغیزمن ورته والی حرکي ورته والی دی. حرکي ورته والی هغه وخت منځ ته راځي چې د اصلي ودانۍ او موډل خوځښت لار او د خوځښت تیزوالی یا سرعت ډیر سره نږدې او ورته وي.
د حرکي ورته والي تر ټولو لوړه کچه داده چې، د خوځښت پر مهال د ودانۍ او د هغه د موډل د هر پوړ اړخیز بیځایښت (lateral displacements) یوشان وي.
د رېږدلې د رېږدیدا کنټرول
د رېږدلې د ریږدیدا کنټرول د څو تخنیکي مفاهیمو ټولگه ده چې موخه ېې پر ودانیو باندې د رېږدلې د اغیز کمول دي. هغه وسیلې چې د ریږدیدا د کنټرول لپاره کارول کیږي په لاندې دریو ډلو ویشل کیږي (۱) مړه، (۲) کارنده او (۳) هابرایډ (hybrid).
- مړه کنټرولونکي وسیله د بیرته ځواب یا feedback ځواک نلري.
- کارنده کنټرولونکي وسیله په ودانۍ کې د ننه په پرمختللو وسایلو سمبال ده چې د ځمکې ور کړ شوی خوځښت پروسس کوي.
- هایبرایډ کنټرولونکې وسیله بیا د پورته یادو دواړو ځانگړتیاوې لري.
کله چې د ځمکې پر مخ د رېږدلې څپې راشي، او هڅه کوي چې د ودانۍ بیخ ته ننوځي- د دغه څپو د انرژۍ د جریان تکاثف د انعکاس له امله په زیاته کچه معمولاً تر 90٪ پورې کمیږي. سره ددې هم په ډیرو ځواکمنو زلزلو کې دغه پاته انرژي د زیاتو ورانیو او خرابیو سبب کیږي.
کله چې د ځمکې څپې یوې ودانۍ ته ننوځي، دلته زیاتې لارې چارې شتون لري چې دوی کنټرول کړي ترڅو د زیاتو ورانیو مخه ېې ونیول شي؛ د بیلگې په توگه د انرژي زبیښونکي یا (Energy Dissippator) ډمپر پوسیله د یادو څپو انرژي د ودانۍ په دننه کې زبیښي.
او ځنې وسیلې د یادو څپو انرژي د زیات شمیر فریکونسیو ترمنځ ویشي چې پدې توگه ېې زور کمیږي. او کله کله هم د کتلوي ډمپر پوسیله د رېږدلې د څپو د تکراري برخې د فریکونسیو بانډ زبیښي.
دا وروستي وسایل ېې د مخففاتو په ډول هر یو TMD (د مړه کنټرولونکي)، AMD (د فعال کنټرولونکي) او HMD (د هایبرایډ کنټرولونکي) لپاره کارول کیږي. یاد وسایل د څه باندې دیرشو کلونو راپدې خوا په جاپان کې په پراخه کچه څیړل کیږي، تولیدیږي او کارول کیږي.
ددې ترڅنگ د رېږدلې د بار د کمولو په موخه یوه بله لار هم شته چې د هغې په مرسته ودانۍ ته د رېږدلې د انرژۍ (څپو) د مخه په نسبي توگه نیول کیږي. د اصلي ودانۍ او د هغه د بار اخیستونکو بنسټونو ترمنځ نرم ربړي مواد کاروي ترڅو ټوله ودانۍ د ځمکې څخه بیله او پدې توگه د رېږدلې د څپو له اغیز څخه په نسبي توگه خوندي وساتي. دا لاره د بیس-آیزولیشن په نوم یادیږي.
د بیس-آیزولیشن لمړنۍ نښې نښانې په لرغوني پارس کې لیدل شویدي. چې تر میلاد مخکې شپږمې پیړۍ ته ورگرځي.
وچ ډبرین دیوال
د انکا تمدن خلک د وچ ډبرین دیوال وتلي خټگر خلک و. دوی به ډیرې داسې پرې کولې چې یو د بل پرمخ ډیرې ښې پریوزي بې لدې چې کومه مساله ېې ترمنځ ور زیاته کړي. ډبرې به په دومره کره توگه ایښودل کیدې چې د دوی ترمنځ درزونو کې د سابو د شنه کیدو یا را وتلو امکان هم هیڅ نه ترسترگو کیده.
د پیرو هیواد یو زلزله لرونکی هیواد دی. او دغه بې مسالې ډبرین دیوالونه د پیړیو را پدیخوا هغو په پرتله چې مساله پکې کارول شویده ډیر کلک او محکم دریدلي پاته شویدي. ددې خبرې راز پدې کې نغښتی دی چې د انکا خلکو به د ډبرو مخونه ښوی پرې کول او پدې توگه به د رېږدلې پر وخت دا ډبرې یو د بل پر مخ لږ-لږ خوځیدې چې پدې توگه ېې د رېږدلې انرژي وژله.
د سرپ او ربړ تکیه
د سرپ او ربړ تکیه یا (Lead Rubber Bearing) چې لدې وروسته به په لنډ ډول (LRB) بلل کیږي، د بیس-آیزولیشن یو ډول دی چې د زیات damping لرونکی دی. (LRB) د لمړي ځل لپاره د زیلاندي بیل رابینسون (Bill Robinson) لخوا اختراع شوی و.
د زیات (damping) میکانیزم چې د لړزې د کنټرول په تکنالوژۍ کې او په ځانگړې توگه په بیس-آیزولیشن کې ترې کار اخیستل کیږي، د لړزې د کمولو یوه ښه وسیله او همداراز د رېږدلې پر وړاندې د ودانیو د ښه کړو د لاسته راوړلو سرچینه ده.
د (LRB) په مرسته نن د نړۍ په گوټ گوټ کې ودانۍ او پلونه د رېږدلې پر وړاندې ډیزاین شویدی.
د ځوړنده کتلې ډمپر
لکه څنگه چې د نوم څخه ېې ښکاري، دا ډول ډمپر tuned mass damper د یوې لوېې گاگریزې (کانکریټي) کتلې څخه عبارت ده چې د ودانۍ په سر، منځ او یا بل موقعیت کې را ځوړنده وي او د رېږدلې پر وخت د ودانۍ د خوځښت پر مخالف جهت باندې حرکت کوي او پدې توگه د ودانۍ زیات بیځایښت مخه نیسي.
د تاپي 101 دنگه ودانۍ باید د باد، بړبوکۍ او سختې رېږدلې پر وړاندې کلک ولاړ وي. په همدې موخه ددغه ودانۍ په 92 م او 88 م پوړ کې 660 میتریک ټنه کتلې راځوړندې دي. دغه درنې کتلې د ودانۍ د اړخیز خوځښت پر مهال د ودانۍ د خوځښت پر مخالف جهت خوځیږي او پدې توگه د رېږدلې پوسیله رامنځ ته شوی خوځښت په ودانۍ کې کموي.
اصطکاکي خوځنده تکیه
اصطکاکي خوځنده تکیه یا (Friction Pendulum Bearing(FPB)) د رېږدلې د غیز کمونکو وسایلو څخه یو دی. اصطکاکي خوځنده تکیه د دریو مهم برخو څخه جوړه شویده:
- ښوی اصطکاکي خوځنده یا (articulated friction slider)؛
- کروي ډوله سطح چې اصطکاکي خوځنده پکې یو خوا بل خوا حرکت کولی شي (spherical concave sliding surface)؛
- د زیات اړخیز بیځایښت مخه نیونکی یا enclosing cylinder for lateral displacement restraint.
په ښي اړخ کې انځور د لړزونکي میز پر سر د یوې ودانۍ موډل چې د (FPB) د پاسه جوړ شوی ښودل شویدی.
د ودانۍ د لوړوالي کنټرول
د ودانۍ د لوړوالي کنټرول (Building elevation control ) هم د لړزې د کنټرولو ښه وسیله ده. هرم ډول دنگې ودانۍ چې نن سبا ېې د مهندسانو او انجینرانو پاملرنه ځانته اړولې ده، د خپل پراخ بنسټ او نرۍ څوکې په درلودو سره د باد او رېږدلې پر وړاندې ښه ځواب ویونکي دي. د لوړوالي دغه ډول ددې سبب کیږي چې د ودانۍ د نوسان د زیاتوالي مخه ونیسي ځکه پدې ډول ودانیو کې د پریکون د قوې د څپو (sheer wave) انرژي د زیاتو فریکونسیو ترمنځ تیت او پرک کیږي.
د ودانۍ کنډو کنډو بڼه یا (tapered profile) ددغه میتود جبري لاره نده چې ودانۍ پرې کنټرول شي. په ورته ډول د نوسان د مخنیوي لپاره کولی شو د ودانۍ په نورو ځانگړنو کې کنډوالی یا کمښت راوستل شي د بیلگې په توگه د کتلې او سختۍ ویش د ودانۍ په لوړوالی کې پداسې ډول چې زیاته کتله او سختي په لاندینیو پوړونو او نسبتا لږ کتله او لږ سختي په پورته پوړونو کې په پام کې ونیول شي (د سختۍ او کتلې ویش د هرم په ډول په پام کې ونیول شي).
ساده رغړنده یا چورلنډۍ تکیه
ساده رغړنده یا چورلنډۍ تکیه (Simple roller bearing ) د بیس-آیزولیشن یوه آله ده چې ډیری ودانۍ د رېږدلې او یا بل اړخیز بار له زیان څخه خوندي ساتي.
دغه اوسپنیزه یا فلزي تکیه د ځنو نسبي خطرونو سره سره د دنگو ودانیو لپاره چې په نرمه ځمکه ودانیږي د بیس-آیزولیشن په توگه منل شویده. دغه وسیله همدا سږ کال (2012) د جاپان په ټوکیو کې د یوې 17 پوړیزه ودانۍ په بنسټ کې د فلزي رغړنده تکیه (Metallic Roller Bearing) په نوم کارول شویدی.
د فنر او ډمپر بیس –آیزولیشن
د فنر او ډمپر بیس –آیزولیشن (Springs-with-damper base isolator) د دری پوړیزې ودانۍ لاندې په کلیفورنیا کې کارول شویدی. دغه ودانۍ د 1994 کال د نارثریج رېږدلې (Northridge earthquake) هم لړزولې ده. ددې د بیس آیزولیشن ډول د سرپي-ربړي تکیې سره ورته والی لري.
له هغو دریو ودانیو څخه چې د پورته ودانۍ سره ورته وې، د رېږدلې د عمودي او افقي تعجیل د ثبت کولو په وسایلو سمبالې وې او د نارثتریج د رېږدلې څخه خوندي پاته شوې چې د نن لپاره د پام وړ ثبت شوي معلومات پریښودل چې د هغوی پر مټ نن نورې څیړنې پرمخ روانې دي.
Hysteretic damper
ددغه ډمپر په درلودو سره ودانۍ د رېږدلې پر وړاندې ډیر ښه او د ویسا وړ کړه ترلاسه کوي- ودانۍ ته د رېږدلې ننوتې انرژي شوپشو کوي یا تیت او پرک کوي.
دغه ډمپر په څلورو لویو ډلو ویشل شویدي:
- اوبلن سریښناک ډمپر یا Fluid viscous dampers (FVDs)
- د فلز د تسلیمیدو ډمپر یا Metallic yielding dampers (MYDs)
- ارتجاعي سریښناک ډمپر یا Viscoelastic dampers (VEDs)
- اصطکاکي ډمپر یا Friction dampers (FDs)
د پورته یادو ډلو څخه هره یوه ېې بیلې ځانگړنې، ښه توبونه، او بد توبونه لري.
د رېږدلې پر وړاندې ډيزاين
د رېږدلې پر وړاندې ډیزاین یا د رېږدلې لپاره ډیزاین د منل شوو انجينري کړنلارو یا (procedures)، ارونو (principles) او معیارونو (criteri) له مخې ترسره کیږي.
دغه معیارونه د وخت د معلوماتو سره سم چې د رېږدلې د انجينرۍپه برخه کې شته دی برابر ټاکل کیږي. نو پدې توگه د یوه ودانیز قانون (کوډ) سره سم ډیزاین شوی او ودان شوی تعمیر دا معنی نلري چې د هیڅ ډول باد یا رېږدلې پر وړاندې باید تل کلک ودریږي.
د رېږدلې د خوار ډیزاین بیه کیدای شي ډیره لوړه وي. سره لدې د رېږدلې پر وړاندې ډیزاین تل د هڅې او تیروتنې (trial and error) یوه پروسه ده چې کیدای شي پر فزیکي قوانینو او یا هم د رېږدلې پر وړاندې د ودانۍ د کړو په اړه پر تجربي پوهه ولاړه وي.
هغه څوک د نوې او شته ودانیو د رېږدلې ډیزاین (seismic design)، یا د رېږدلې شننه (seismic analysis) او یا هم د رېږدلې ارزونه (seismic evaluation) کوي باید د انجينرۍپدغه برخه کې د بریلیک ترڅنگ د رېږدلې د آرونو (Seismic Principles) په برخه کې آزموینه په بریالیتوب سره تیره کړي. دغه آزموینه د امریکا په کلیفورنیا کې لاندې برخې را نغاړي:
- د رېږدلې ډیټا او د رېږدلې د ډیزاین معیارونه؛
- د انجينري سیستمونو یا ودانیو ځانگړتیاوې د رېږدلې پر وړاندې؛
- د رېږدلې قوې؛
- د رېږدلې لپاره د ودانیو د شننې کړنلارې؛
- د رېږدلې لپاره د ډیزاین رسمونه او د ودانیزې وړتیا کنټرول یا (Construction Quality Control).
د ودانیزو کوډونو له مخې ودانۍ داسې ډیزاین کیږي چې په سیمه کې د ممکنه پیښیدونکو زلزلو پر وړاندې ودریږي. د بیلگې په توگه په یوه سیمه کې یوه لویه ورانونکې زلزله هر شلو کاله کې یوځل پیښیږی. نو کچیرې د یوې ودانۍ عمر شل، دیرش یا زیات اټکل کیږي باید ددغه لوېې رېږدلې لپاره ودانۍ ودانې شي. د رېږدلې ډیزاین ددې لپاره ترسره کیږي ترڅو د امکان تر بریده د ودانۍ د نړیدو د مخنیوي له مخې د خلکو د ژوند ساتنه وکړي.
د رېږدلې ډیزاین د ودانۍ د نړیدو د ممکنه موډونو د پیژندلو او ودانۍ ته د مناسب کلکوالي، سختۍ، نرمښت، او هندسي شکل په پام کې نیولو سره ترسره کیږي ترڅو د د یادو موډونو د منځ ته نه راتگ څخه ډاډ ترلاسه شي.
د رېږدلې پر وړاندې د ډیزاین شرایط یا اړتیاوې
د رېږدلې پر وړاندې د ډیزاین شرایط د ودانۍ پر څرنگوالي، د پروژې ځای، او د ودانۍ د خاوند یا ښاروالۍ چې د رېږدلې د ډیزاین لپاره قانون (کوډ) او معیارونه ټاکي، اړه لري.
د امریکا په کالیفورنیا کې د رېږدلې پر وړاندې د ډیزاین معیارونو یا (Seismic Design Criteria (SDC)) د پام وړ ټکی دادی چې په هغه کې د ډیزاین فلسفه د رېږدلې د غوښتنې (seismic demand) ارزونه د قوې پر بنسټ ولاړ (force-based assessment) حالت څخه د بیځایښت پر بنسټ ولاړې ارزونې (displacement-based assessment) ته اړوي. دغه نوې منل شوې (د بیځایښت پر بنسټ ولاړه) کړنلاره د ودانۍ د مهم غړو د ارتجاعي بیځایښت (elastic displacemen) د غوښتنې او غیر ارتجاعي بیځایښت (inelastic displacement) د ظرفیت د پرتله کولو پر بنسټ ولاړه ده.
د ودانۍ پر ډیزاین سربیره، د رېږدلې پر وړاندې ډیزاین ددې غوښتنه هم کوي چې کله کله د ودانۍ لاندې ځمکه پیاوړي شي. ځنې وخت د لویو زلزلو له کبله د ودانۍ لاندې ځمکه چوي او د ودانۍ د چپه کیدو لامل کیږي.
د ماتې موډونه
د ماتې ډول (Failure mode ) لکه د نامه څخه ېې چې ښکاري، د رېږدلې له کبله د ودانۍ د ماتیدو یا چپه کیدو ډول ته وایي. د ماتې ډول په ټوله کې د ودانۍ د چپه کیدو څرنگوالی را ښيي. که څه هم د ماتې د ډول زده کړه ډیر لگښت او وخت غواړي، خو له کبله ېې په راتلونکې کې د رېږدلې پر وړاندې د ډیزاین د ښه کولو لپاره ډیر څه ترلاسه کیدلی شي.
د رېږدلې څخه د ماتې د را ولاړو ډولونو له ډلې څخه د څو ډولونو یادونه شویده:
د پولادو کمښت یا نشتون د کمې مسالې سره یو ځاې او همدارنگه د بام او دیوال ترمنځ نا مناسب تړون ددې ودانۍ د ورانۍ سبب شویدی. د څنگ وهلي (کاږه شوي) درز شوو دیوالونو چپه کیدل هم د رېږدلې د زیاتو پیښیدونکو ورانیو له دلې څخه دي. تر ټولو خطرناک ورانی چې پیښیږي هغه د بام یا چت او دیوالونو ترمنځ دی. د دیوالونو او د ودانۍ د فرم () ترمنځ بیلتون د ودانۍ د باروړنې ځواک کموي او پدې توگه سیستم د عمودي بارونو پر وړاندې بې ځواکه کیږي.
نرم پوړ یا (Soft story) په یوه پوړ کې د پریکون د افقي قوې د زغملو لپاره د اړتیا وړ مقاومت او کلکوالي نشتون ته وايي. دغه راز ویلی شو چې یو پوړ هغه وخت نرم بلل کیږي چې اړخیز مقاومت ېې د همدې پوړ د پاسه یا تر هغه لاندې پوړ د اړخیز مقاومت څخه کم وي.
د خاورې خوړینېدل په هغه ځای کې چې خاوره له نرمو پرتو رسوبي موادو څخه جوړه وي د اوبو په رسیدو او ټکان ورکولو سره نوموړې خاوره خوړینیږي او خپل مقاومت له لاسه ورکوي. د خاورې د خوړینېدو له کبله ممکن ودانۍ نا منظمه ناسته وکړي او یا هم ټوله ودانۍ پر ځمکه ننوځي. دغه پیښې د نِي گه ته (Niigata, Japan) په زلزله کې زرگونه ودانۍ زیانمنې کړې.
د ځمکې ښوییدنه یوه ځمکپوهنیزه پیښه ده چې د ځمکې د بیلابیلو خوځښتونو لکه د ډبرو را ښویېدل او نور پکې شامل دي. زیاتره وخت د ځمکې د جاذبې قوه پدې پیښه کې وتلی رول لوبوي. خو په پورته یاده پیښه کې ددې سربیره یو بل عامل هم و چې په سیمه کې ېې د مخ ځوړ ځای په ښوی والي کې رول درلود: د ځمکې ښویېدنې د رېږدلې یو وړوکي ټکان ته اړتیا درلوده ترڅو په خوځښت پیل وکړي.
د ترڅنگ ودانۍ سره لگیدل. دغه انځور یوه پنځه پوړیزه ودانۍ چې د ترڅنگ ودانۍ سره د ټکر له امله زیانمنه شویده په گوته شویده. دغه دوه برجونو د خپلو جلا او نا ورته اړخیزو خوځښتونو له کبله یو له بل ټکر کړیدی. د دوه څنگ په څنگ ودانیو ترمنځ باید په کافي اندازه واټن په پام کې ونیول شي ترڅو د ټکر مخه ونیول شي.
د غوټو د بشپړې ورانۍ مانا داده چې ددغه ودانۍ د ستنې او تیر غوټو کې د اړتیا سره سم پولادی سیخان نه و ځای پر ځای شوي.
د ودانۍ په دا بل اړخ کې شیر وال چې خښتو څخه جوړ او د شارټکټ پوښ ورکړ شوی و- د اړخیز بار د زغملو پر مهال ېې پوښ ترې بیل شوی او دیوال چپه شویدی، ځکه چې د اړتیا وړ پولادي سیخان ېې نه درلودل
رېږدلې زغمونکې ودانۍ
Earthquake construction means implementation of seismic design to enable building and non-building structures to live through the anticipated earthquake exposure up to the expectations and in compliance with the applicable building codes.
Design and construction are intimately related. To achieve a good workmanship, detailing of the members and their connections should be as simple as possible. As any construction in general, earthquake construction is a process that consists of the building, retrofitting or assembling of infrastructure given the construction materials available.[۳]
The destabilizing action of an earthquake on constructions may be direct (seismic motion of the ground) or indirect (earthquake-induced landslides, soil liquefaction and waves of tsunami).
A structure might have all the appearances of stability, yet offer nothing but danger when an earthquake occurs.[۴] The crucial fact is that, for safety, earthquake-resistant construction techniques are as important as quality control and using correct materials. Earthquake contractor should be registered in the state of the project location, bonded and insured.
To minimize possible losses, construction process should be organized with keeping in mind that earthquake may strike any time prior to the end of construction.
Each construction project requires a qualified team of professionals who understand the basic features of seismic performance of different structures as well as construction management.
د خامو خښتو ودانۍ
Around thirty percent of the world's population lives or works in earth-made construction.[۵] Adobe type of mud bricks is one of the oldest and most widely used building materials. The use of adobe is very common in some of the world's most hazard-prone regions, traditionally across Latin America, Africa, Indian subcontinent and other parts of Asia, Middle East and Southern Europe.
Adobe buildings are considered very vulnerable at strong quakes.[۶] However, multiple ways of seismic strengthening of new and existing adobe buildings are available, see, e.g.,.[۷]
Key factors for the improved seismic performance of adobe construction are:
- Quality of construction.
- Compact, box-type layout.
- Seismic reinforcement.[۸]
Limestone and sandstone structures
Limestone is very common in architecture, especially in North America and Europe. Many landmarks across the world, including the pyramids in Egypt, are made of limestone. Many medieval churches and castles in Europe are made of limestone and sandstone masonry. They are the long-lasting materials but their rather heavy weight is not beneficial for adequate seismic performance.
Application of modern technology to seismic retrofitting can enhance the survivability of unreinforced masonry structures. As an example, from 1973 to 1989, the Salt Lake City and County Building in Utah was exhaustively renovated and repaired with an emphasis on preserving historical accuracy in appearance. This was done in concert with a seismic upgrade that placed the weak sandstone structure on base isolation foundation to better protect it from earthquake damage.
د دستکو چوکاټونو ودانۍ
دستک framing dates back thousands of years, and has been used in many parts of the world during various periods such as ancient Japan, Europe and medieval England in localities where timber was in good supply and building stone and the skills to work it were not.
The use of timber framing in buildings provides their complete skeletal framing which offers some structural benefits as the timber frame, if properly engineered, lends itself to better seismic survivability.[۹]
د سپکو چوکاټونو ودانۍ
Light-frame structures usually gain seismic resistance from rigid plywood shear walls and wood structural panel diaphragms.[۱۰] Special provisions for seismic load-resisting systems for all engineered wood structures requires consideration of diaphragm ratios, horizontal and vertical diaphragm shears, and connectorکينډۍ:Disambiguation needed/fastener values. In addition, collectors, or drag struts, to distribute shear along a diaphragm length are required.
Reinforced masonry structures
A construction system where steel reinforcement is embedded in the mortar joints of masonry or placed in holes and after filled with concrete or grout is called reinforced masonry.[۱۱]
The devastating 1933 Long Beach earthquake revealed that masonry construction should be improved immediately. Then, the California State Code made the reinforced masonry mandatory.
There are various practices and techniques to achieve reinforced masonry. The most common type is the reinforced hollow unit masonry. The effectiveness of both vertical and horizontal reinforcement strongly depends on the type and quality of the masonry, i.e. masonry units and mortar.
To achieve a ductile behavior of masonry, it is necessary that the shear strength of the wall is greater than the flexural strength.[۱۲]
Reinforced concrete structures
Reinforced concrete is concrete in which steel reinforcement bars (rebars) or fibers have been incorporated to strengthen a material that would otherwise be brittle. It can be used to produce beams, columns, floors or bridges.
Prestressed concrete is a kind of reinforced concrete used for overcoming concrete's natural weakness in tension. It can be applied to beams, floors or bridges with a longer span than is practical with ordinary reinforced concrete. Prestressing tendons (generally of high tensile steel cable or rods) are used to provide a clamping load which produces a compressive stress that offsets the tensile stress that the concrete compression member would, otherwise, experience due to a bending load.
To prevent catastrophic collapse in response earth shaking (in the interest of life safety), a traditional reinforced concrete frame should have ductile joints. Depending upon the methods used and the imposed seismic forces, such buildings may be immediately usable, require extensive repair, or may have to be demolished.
Prestressed structures
Prestressed structure is the one whose overall integrity, stability and security depend, primarily, on a prestressing. Prestressing means the intentional creation of permanent stresses in a structure for the purpose of improving its performance under various service conditions.[۱۳]
There are the following basic types of prestressing:
- Pre-compression (mostly, with the own weight of a structure)
- Pretensioning with high-strength embedded tendons
- Post-tensioning with high-strength bonded or unbonded tendons
Today, the concept of prestressed structure is widely engaged in design of buildings, underground structures, TV towers, power stations, floating storage and offshore facilities, nuclear reactor vessels, and numerous kinds of bridge systems.[۱۴]
A beneficial idea of prestressing was, apparently, familiar to the ancient Rome architects; look, e.g., at the tall attic wall of Colosseum working as a stabilizing device for the wall piers beneath.
پولادي ودانۍ
Steel structures are considered mostly earthquake resistant but this isn't always the case. A great number of welded Steel Moment Resisting Frame buildings, which looked earthquake-proof, surprisingly experienced brittle behavior and were hazardously damaged in the 1994 Northridge earthquake.[۱۵] After that, the Federal Emergency Management Agency (FEMA) initiated development of repair techniques and new design approaches to minimize damage to steel moment frame buildings in future earthquakes.[۱۶]
For structural steel seismic design based on Load and Resistance Factor Design (LRFD) approach, it is very important to assess ability of a structure to develop and maintain its bearing resistance in the inelastic range. A measure of this ability is ductility, which may be observed in a material itself, in a structural element, or to a whole structure.
As a consequence of Northridge earthquake experience, the American Institute of Steel Construction has introduced AISC 358 "Pre-Qualified Connections for Special and intermediate Steel Moment Frames." The AISC Seismic Design Provisions require that all Steel Moment Resisting Frames employ either connections contained in AISC 358, or the use of connections that have been subjected to pre-qualifying cyclic testing.[۱۷]
Prediction of earthquake losses
Earthquake loss estimation is usually defined as a Damage Ratio (DR) which is a ratio of the earthquake damage repair cost to the total value of a building.[۱۸] Probable Maximum Loss (PML) is a common term used for earthquake loss estimation, but it lacks a precise definition. In 1999, ASTM E2026 'Standard Guide for the Estimation of Building Damageability in Earthquakes' was produced in order to standardize the nomenclature for seismic loss estimation, as well as establish guidelines as to the review process and qualifications of the reviewer.[۱۹]
Earthquake loss estimations are also referred to as Seismic Risk Assessments. The risk assessment process generally involves determining the probability of various ground motions coupled with the vulnerability or damage of the building under those ground motions. The results are defined as a percent of building replacement value.[۲۰]
دا هم وگورۍ
- List of international earthquake acceleration coefficients
- Probabilistic risk assessment
- Soil structure interaction
- Spectral acceleration
سرچينې
- ↑ Bozorgnia, Yousef; Bertero, Vitelmo V. (2004). Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering. CRC Press. ISBN 978-0-8493-1439-1.
- ↑ Chopra, Anil K. (1995). Dynamics of Structures. Prentice Hall. ISBN 0-13-855214-2.
- ↑ Edited by Dr. Robert Lark (2007). Bridge Design, Construction and Maintenance. Thomas Telford. ISBN 0-7277-3593-4.
{{cite book}}
:|author=
has generic name (help) - ↑ http://www.msnbc.msn.com/id/24993357/
- ↑ "Earth Architecture - the Book, Synopsis". بياځلي په 21 January 2010.
- ↑ http://nz.youtube.com/watch?v=AOiqGHEOmuA&feature=PlayList&p=F297EF2ADDEAD86C&index=16
- ↑ "آرشیف کاپي" (PDF) (PDF). بياځلي په 2012-10-16.
{{cite web}}
: CS1 errors: archive-url (link) CS1 errors: unsupported parameter (link) - ↑ http://nz.youtube.com/watch?v=_EUOPY0OjlQ&feature=PlayList&p=F297EF2ADDEAD86C&index=21
- ↑ Timber Design & Construction Sourcebook=Gotz, Karl-Heinz et al. McGraw-Hall. 1989. ISBN 0-07-023851-0.
- ↑ "آرشیف کاپي". بياځلي په 2012-10-16.
{{cite web}}
: CS1 errors: archive-url (link) CS1 errors: unsupported parameter (link) - ↑ "آرشیف کاپي". بياځلي په 2012-10-16.
{{cite web}}
: CS1 errors: archive-url (link) CS1 errors: unsupported parameter (link) - ↑ Ekwueme, Chukwuma G.; Uzarski, Joe (2003). Seismic Design of Masonry Using the 1997 UBC. Concrete Masonry Association of California and Nevada.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Nilson, Arthur H. (1987). Design of Prestressed Concrete. John Wiley & Sons. ISBN 0-471-83072-0.
- ↑ Nawy, Edward G. (1989). Prestressed Concrete. Prentice Hall. ISBN 0-13-698375-8.
- ↑ Reitherman, Robert (2012). Earthquakes and Engineers: An International History. Reston, VA: ASCE Press. pp. 394–395. ISBN 9780784410714.
{{cite book}}
: CS1 errors: archive-url (link) CS1 errors: unsupported parameter (link) - ↑ http://www.sacsteel.org/index.html
- ↑ Seismic Design Manual. Chicago: American Institute of Steel Construction. 2006. pp. 6.1-30. ISBN 1-56424-056-8.
- ↑ EERI Endowment Subcommittee (May 2000). Financial Management of Earthquake Risk. EERI Publication. ISBN 0-943198-21-6.
- ↑ Eugene Trahern (1999). "Loss Estimation". خوندي شوی له the original on 2009-04-10. بياځلي په 2012-10-16.
- ↑ Craig Taylor and Erik VanMarcke, ed. (2002). Acceptable Risk Processes: Lifeline and Natural Hazards. Reston, VA: ASCE, TCLEE. ISBN 9780784406236.
{{cite book}}
: CS1 errors: archive-url (link) CS1 errors: unsupported parameter (link)
باندنۍ تړنې
- Seismic Risk Analysis using GIS: Evaluation of Structural Damage to Buildings and Loss Estimation Archived 2014-10-19 at the Wayback Machine.
- EERI website
- Consortium of Universities for Research in Earthquake Engineering (CUREE)
- George E. Brown, Jr. Network for Earthquake Engineering Simulation Archived 2017-02-14 at the Wayback Machine.
- USGS Earthquake Hazards Program
- Earthquakes and Earthquake Engineering in The Library of Congress
- Infrastructure Risk Research Project at The University of British Columbia, Vancouver, Canada Archived 2019-12-18 at the Wayback Machine.
- Earthquake انجينري
- هغه پاڼي چي د جېسن کنفیګرېشن غزونکې اله کاروي
- CS1 errors: generic name
- CS1 errors: archive-url
- CS1 errors: unsupported parameter
- CS1 maint: multiple names: authors list
- د وېبپاڼيزې کينډۍ لارښوونيز لینکونه
- د دوتنو د ماتو تړنو مخونه
- ښاري انجينري
- ودانيزه انجينري
- رېږدلې انجينري
- Seismic vibration control
- Engineering disciplines
- رېږدله
- Seismology